分数阶微分方程初值问题的比较定理Some New Comparison Theorem for Initial Value Problem of Fractional Differential Equations
郑艳萍,杨慧
摘要(Abstract):
结合分数阶微分方程初值问题的三种不同类型的上、下解的定义,构造出其相应的积分算子,利用微分方程与积分方程的等价性及分析中经典的证明技巧,给出了分数阶微分方程初值问题的三种比较定理。这些结果是原比较定理的推广。
关键词(KeyWords): 分数阶微分方程;比较定理;Caputo型导数
基金项目(Foundation): 国家自然科学基金(11401424);; 山西省教育科学“十三五”规划基础教育提升计划专项(ZJ-17011)
作者(Author): 郑艳萍,杨慧
参考文献(References):
- [1] PODLUBNY I. Fractional differential equations[M]. New York:Academic Press,1999.
- [2] LAKSHMIKANTHAM V,VATSALA A S. Basic theory of fractional equations[J]. Nonlinear Analysis,2008,69:2677-2682.
- [3]胡桐春,钱德亮,李常品.分数阶微分方程的比较定理[J].应用数学与计算数学学报,2009,23(1):97-103.
- [4]古传运,郑凤霞.具有Caputo型导数的分数阶微分方程比较定理的推广[J].西昌学院学报:自然科学版,2013,27(3):18-22.
- [5] ALI YAKAR. Some generalizations of comparison results for fractional differential equations[J]. Computers and Mathematics with Applications,2011,62:3215-3220.
- [6] WANG YANXIN,ZHU LI. SCW method for solving the fractional integro-differential equations with a weakly singular kernel[J]. Applied Mathematics and Computation,2016,275:72-80.
- [7] KUMAR KAMLESH,PANDEY RAJESH K,SHARMA SHIVA. Comparative study of three numerical schemes for fractional integro-differential equations[J]. Journal of Computational and Applied Mathematics,2017,315:287-302.