一类脉冲时滞微分方程解的吸引性Attractivity of Solution for A Class of Impulsive Delay Differential Equations
景冰清
摘要(Abstract):
研究了一类一阶脉冲时滞微分方程周期解的吸引性。利用微分不等式的相关理论,证明了方程所有正解全局吸引于y*(t)的充分条件。当m=n时,结果即为已知文献的相关结论,推广了已有文献中的相关结果,具有一定的理论意义和较强的实际应用价值。
关键词(KeyWords): 脉冲;时滞微分方程;吸引性;微分不等式;正解
基金项目(Foundation): 山西省社科联重点课题项目(2010058)
作者(Author): 景冰清
参考文献(References):
- [1]NAZARENKO V G.Influence of delay on auto oscillation in cell population[J].Biofisika,1976,21:352-356.
- [2]KUBIACZYK I,SAKER S H.Oscillation and stability in nonlinear delay differential equations of population dynamics[J].MathComput Modelling,2002,35:295-301.
- [3]YAN JURANG.Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model[J].JMath Anal Appl,2003,279:111-120.
- [4]SAKER S H,ALZABUT J O.Existence of periodic solutions global attractivity andoscillation of impulsive delay population model[J].Nonlinear Anal,2007,8:1029-1039.
- [5]孙树杰,张玲玲.一类二阶脉冲微分方程三点边值问题的多重正解[J].太原科技大学学报,2009,30(1):63-65.
- [6]景冰清.Lasota-Wazewska模型的唯一周期正解的存在性[J].太原科技大学学报,2008,29(3):217-219
- [7]YAN JURANG,ZHAO AIMIN.Existence and global attractivity of periodic solution for an impulsive delay differential equationwith allee effect[J].J Math Anal Appl,2005,309:489-504.
- [8]LADDE G S,LAKSHMIKANTHAM V.Oscillation Theory of Differential Equations with Deviating Arguments[M].New York:Marcel Dekker,1987.