多层次细粒度特征三分支网络行人重识别方法Person Re-identification Method Based on Three-branch Network with Multi-level Fine-grained Feature
贺南南,张荣国,胡静,李建伟,李晓波
摘要(Abstract):
针对行人重识别中信息丢失导致判别性信息缺失的问题,提出了一种多层次细粒度特征三分支网络行人重识别方法。首先,在ResNet50网络上构建中层全局特征分支、多层次全局特征分支和局部特征分支,全局分支提供更加全面的特征表示,局部特征分支提供细粒度的特征表示;其次,在三分支网络上改进了损失函数,使用权重向量和特征向量归一化以消除向量模的影响,通过构建难样本三元组损失以解决类间相似、类内差异分类问题;最后,在Market-1501和DukeMTMC-reid两个数据集上进行实验,rank-1达到了94.0%和87.4%,mAP达到了85.7%和75.5%.和现有的八种方法进行对比实验,结果表明本文方法在行人重识别中具有更好的准确率和精度。
关键词(KeyWords): 行人重识别;多层次细粒度;特征提取;深度学习;分支网络
基金项目(Foundation): 国家自然基金(51375132);; 山西省自然科学基金(201801D121134);; 太原科技大学博士科研启动基金(20202057)
作者(Author): 贺南南,张荣国,胡静,李建伟,李晓波
参考文献(References):
- [1] SUN Y F,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling[C]//European Conference on Computer Vision,Munich:Springer,2018:501-518.
- [2] CHEN X S,FU C M,ZHAO Y,et al.Salience-Guided Cascaded Suppression Network for Person Re-identification[C]//Computer Vision and Pattern Recognition.Seattle:IEEE,2020:3300-3310.
- [3] HU J,CHEN Z B,YANG M,,et al.A Multiscale Fusion Convolutional Neural Network for Plant Leaf Recognition[J].IEEE Signal Processing Letters,2018,25(6):853-857
- [4] ZHENG L,HUANG Y J,LU H C,et al.Pose Invariant Embedding for Deep Person Re-identification[J].IEEE Transactions on Image Processing,2019,28(9):4500-4509.
- [5] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
- [6] LIU X H,ZHAO H Y,TIAN M Q,et al.HydraPlus-Net:Attentive Deep Features for Pedestrian Analysis[C]//International Conference on Computer Vision.Venice:IEEE,2017:350-359.
- [7] HERMANS A,BEYER L,LEI B B.In defense of the triplet loss for person re-identification[J].arXiv preprint arXiv:2017,1703:07737.
- [8] WANG F,XIANG X,CHENG J,et al.Normface:l2 hypersphere embedding for face verification[C]//Proceedings of the 25th ACM international conference on Multimedia.New York:ACM,2017:1041-1049.
- [9] LIU W Y,WEN Y D,YU Z D,et al.SphereFace:Deep Hypersphere Embedding for Face Recognition[C]//Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6738-6746.
- [10] ZHENG L,SHEN L Y,TIAN L,et al.Scalable person re-identification:a benchmark[C]//International Conference on Computer Vision.Santiago:IEEE,2015:1116-1124.
- [11] RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multicamera tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:17-35.
- [12] HOU R B,MA B P,CHANG H,et al.Interaction-and-aggregation network for person re-identification[C]//Computer Vision and Pattern Recognition,Long Beach:IEEE,2019:9317-9326.
- [13] QUAN R J,DONG X Y,WU Y ,et al.Auto-ReID:Searching for a Part-Aware ConvNet for Person Re-Identification[C]//International Conference on Computer Vision.Seoul,Korea:IEEE,2019:3749-3758.
- [14] LI W,ZHU X T,GONG S G.Harmonious Attention Network for Person Re-Identification[C]//Computer Vision and Pattern Recognition,Salt Lake City:IEEE,2018:2285-2294.
- [15] SHEN Y T,LI H S,XIAO T,et al.Deep Group-Shuffling Random Walk for Person Re-Identification[C]//Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:2265-2274.
- [16] MIAO J X ,WU Y,LIU P,et al.Pose-Guided Feature Alignment for Occluded Person Re-Identification[C]//International Conference on Computer Vision.Seoul:IEEE,2019:542-551.
- [17] GUO J Y,YUAN Y H,HUANG L ,et al.Beyond Human Parts:Dual Part-Aligned Representations for Person Re-Identification[C]//International Conference on Computer Vision.Seoul:IEEE,2019:3641-3650.