基于布谷鸟鸽群融合算法的多智能体避障研究Research on Multi-intelligent Body Obstacle Avoidance Based on the Fusion Algorithm of Pigeon Group of Cuckoo
吴波,王健安
摘要(Abstract):
针对多智能体系统在避障过程中易出现避障路径冗长、时效性较差的问题,提出一种布谷鸟鸽群融合避障算法。首先,利用自适应调整步长策略调整布谷鸟Levy飞行步长大小,进行长、短交替搜索获得鸟巢位置更新点,得到次优避障路径;其次,在次优路径的基础上,引入鸽群优化算法(PIO)的地图罗盘算子与地表算子进行二次避障路径规划演示,再次更新位置点,进而获得最优避障路径。最后利用MATLAB仿真,通过效率函数分析对比布谷鸟人工势场算法,在20、40、60个随机分布的障碍物环境中,融合算法你避障时间缩短了约5.55%、16.00%、17.35%.
关键词(KeyWords): 多智能体系统;避障路径规划;布谷鸟算法;鸽群优化算法
基金项目(Foundation): 山西省重点研发计划(201903D421045)
作者(Author): 吴波,王健安
参考文献(References):
- [1] HU T,HE Z,ZHANG X,et al.Leader-following consensus of fractional-order multi-agent systems based on event-triggered control[J].Nonlinear Dynamics,2020,99(3):2219-2232.
- [2] ULISES O R,OSCAR M,ROBERTO S.Mobile robot path planning using membrane evolutionary artificial potential field[J].Applied Soft Computing Journal,2019,77(1):321-331.
- [3] ZHANG J R,ZHAO S G.Optimal planning approaches with multiple impulses for rendezvous based on hybrid genetic algorithm and control method[J].SAGE Publications,2015,7(3):435-442.
- [4] 张攀,刘新杰,张威,等.飞机牵引机器人路径跟踪模糊控制[J].计算机工程与应用,2019,55(16):217-220+234.
- [5] 温素芳,郭光耀.基于改进人工势场法的移动机器人路径规划[J].计算机工程与设计,2015,36(10):2818-2822.
- [6] YANG X,YANG W,ZHANG H,et al.A new method for robot path planning based artificial potential field[C]//2016 IEEE 11th Conference on Industrial Electronics and Applications,Hefei:2016:276-184.
- [7] QIU G Q,LI F Y,WU J.Multi-robot Hybrid Formation Control Based on Multi-Agent Genetic Algorithm[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),2017,5(2):8-17.
- [8] REND Y S,NURMAINI S,SARI S,et al.Implementation of Fuzzy Logic Control for Navigation System in Mobile Robot Omnidirectional[C]//Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications Indonesia,2020:1778-1789.
- [9] 张晓凤,王秀英.布谷鸟搜索算法综述[J].计算机工程与应用,2018,54(18):8-16.
- [10] CONG L,DUAN H B,et al.Target detection approach for UAVs via improved Pigeon-inspired Optimization and Edge Potential Function[J].Aerospace Science and Technology,2014,39:352-360.
- [11] 郑延斌,席鹏雪,王林林,等.基于人工势场法的多智能体编队避障方法[J].计算机应用,2018,38(12):3380-3384+3413.
- [12] 吴慧超,罗元,周前能,等.时效优先的轮式机器人编队避障策略[J].信息与控制,2017,46(2):211-217.