工程机械各态约束阻尼结构动力学研究探讨Dynamic Research Discuss of Different Form Constrained Damping Structures Used in Construction Machinery
乔冠森,燕碧娟,罗骞,赵章达,李占龙
摘要(Abstract):
工程机械在“一带一路”建设中发挥着主力军作用。为有效降低整机振动与噪声水平,可在其上采用各态阻尼结构。该文针对粘弹结构动力学特性中的材料温频变及结构参数多变性等难题,综述了粘弹约束阻尼结构动力学特性的四种主流分析方法。介绍了粘弹约束层阻尼结构的代表性敷设形式,重点归纳总结了各种研究方法的优缺点,指出了动力学分析有待进一步探讨的问题。为我国工程机械减振的应用研究提供一定的参考,同时可为阻尼技术在各个经济领域里的广泛应用提供研究方法。
关键词(KeyWords): 工程机械;阻尼结构;粘弹减振;动力学特性
基金项目(Foundation): 国家自然科学基金(52272401);; 山西省研究生创新项目(2022Y672)
作者(Author): 乔冠森,燕碧娟,罗骞,赵章达,李占龙
参考文献(References):
- [1] 戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986.
- [2] 戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991.
- [3] KERWIN,EDWARD M.Damping of flexural waves by a constrained viscoelastic layer[J].Journal of the Acoustical Society of America,1959,31(7):952-962.
- [4] DITARANTO R A.Theory of vibratory bending for elastic and viscoelastic layered finite length beams[J].Journal of Applied Mechanics,1965,87:881-886.
- [5] MEAD D J,MARKUS S.The forced vibration of a three-layer damping sandwich beam with arbitrary boundary conditions[J].Journal of Sound and Vibration,1969,10(2):163-175.
- [6] RAO D K.Frequency and loss foctors of sandwich beam under various boundary conditions[J].Journal of Mechanical Engineering Science,1978,20(5):271-282.
- [7] JOHNSON C D,KEINHOLZ D A.Finite element prediction of damping in structures with constrained viscoelastic layers[J].AIAA Journal,1982,20(9):1284-1290.
- [8] LALL A K,ASNANI N T,NAKRA B C.Damping analysis of partially covered sandwich beams[J].Journal of sound and Vibration,1988,123(2):247-259.
- [9] 桂洪斌,赵德有,郑云龙.粘弹性阻尼层结构动力问题有限元分析综述[J].振动与冲击,2001,20(1):44-48.
- [10] 李世其,胡线会,朱文革,等.定频变温下粘弹材料动力学特性数据拟合分析[J].材料科学与工程学报,2010,28(6):839-843.
- [11] 黄志诚,秦朝烨,褚福磊.附加粘弹阻尼层的薄壁构件振动问题研究综述[J].振动与冲击,2014(7):105-113.
- [12] 李恩奇,唐国金,雷勇军,等.约束层阻尼板动力学问题的传递函数解[J].国防科技大学学报,2008(1):5-9
- [13] 李恩奇,李道奎,唐国金,等.约束层阻尼圆柱壳动力学分析[J].工程力学,2008(5):6-11.
- [14] YIN WENHAN,SUN FEIFEI.Analytical Method of the modal damping ratio of the beam with distributed dissipative oscillators and application in broadband vibration mitigation[J].Mechanical Systems and Signal Processing Processing,2022,166:108470.
- [15] ALEXANDER JACKSTADT,WILFRIED V LIEBIG,LUISE K?RGER.Damping analysis of sandwich beams with the viscoelastic particulate composite core using fractional order derivation viscoelastic constitutive model[J].Materials Today:Proceedings,2022,56:1168-1172.
- [16] WANG GANG,WESLEY NORMAN,CHANG DERCHEN.Analysis of plates with passive constrained layer damping using 2D plate modes[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Denever Co,United States,2002.
- [17] LI HUI,WANG ZIHENG,LV HAIYU,et al.Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment [J].Thin-Walled Structures,2020,157:107000.
- [18] 伍先俊.约束阻尼结构阻尼效果的有限元预测方法研究[J].噪声与振动控制,2019,39(1):205-209+234.
- [19] CHEN Q,CHAN Y W.Integral finite element method for dynamical analysis of elastic-viscoelastic composite structures[J].Computers and Structures,2000,74:51-64.
- [20] VPRIYANKAR DATTA.Active vibration control of axially functionally graded cantilever beams by finite element method[J].Materials Today:Proceeding,2021,44:2543-2550.
- [21] ABHAY GUPTA,SATYAJIT PANDA.Hybrid damping treatment of a layered beam using a particle-filled viscoelastic composite layer[J].Composite Structures,2021,262:113623.
- [22] HUANG ZHICHENG,PENG HUANYOU,WANG XINGGUO,et al.Finite element modeling and vibration constrained of plates with active constrained layer damping treatment[J].Materials,2023,16(4):1652.
- [23] MA HONGWEI,SUN WEI,WANG DONG,et al.Finite element-modeling of straight pipelinewith partially attached viscoelastic damping patch based on variable thickness laminatedelement[J].Composite Structures,2023,314:116944.
- [24] ZHANG Q J,SAINSBURY M G.The Galerkin element method applied to the vibration of rectangular damped sandwich plates[J].Computers and Stuctures,2000,74(5):717-730.
- [25] 燕碧娟,张文军,李占龙,等.层间过渡约束阻尼结构动力响应的分布参数传递函数解[J].振动与冲击,2016,35(5):186-190+233.
- [26] 燕碧娟,孙大刚,张文军,等.农业机械管状过渡阻尼结构参数分析及优化[J].农业工程学报,2015,31(22):56-62.
- [27] WANG G,WERELEY N M.Spectral finite element analysis of sandwich beams with passive constrained layer damping[J].Journal of Vibration and Acoustics Transactions of the ASME,2002,124(3):376-386.
- [28] 王淼,方之楚.主动约束层阻尼杆结构纵振的多层谱有限元法[J].上海交通大学学报,2005,39(2):302-305.
- [29] MANCONI E,MACE B R.Estimation of the loss factor of viscoelastic laminated panels from finite element analysis[J].Journal of Sound and Vibration,2010,329:3928.
- [30] LI XIAOZHEN,JIANG XIHAO,LI HAOQING,et al.A hybrid IMSE-FE-BE method coupled with RSM for vibro-acoustic analysis and optimization of an I-shaped steel beam damped with constrained layer damping[J].Applied Acoustics,2022,201:109098.
- [31] SHIN Y S,MAURER G J.Vibration response of constrained viscoelastically damped plates analysis and experiments [J].Finite Elements in Analysis and Design,1991,7(4):291- 297.
- [32] 燕碧娟,刘威,宋勇.基于ANSYS模态应变能法驱动轮过渡阻尼减振结构参数优化[J].中国工程机械学报,2021,19(3):194-200.
- [33] 孙宝,孙大刚,李占龙,等.粘弹结构模态损耗因子分析的修正模态应变能法[J].兵工学报,2016(1):155-164.
- [34] 吕刚,陆锋,张景绘.桁架结构阻尼控制的绝对值模态应变能法[J].宇航学报,1999,20(2):113-118.
- [35] 李世其,张针粒,朱文革,等.计算粘弹结构动力学参数的新模态应变能方法[J].噪声与振动控制,2011,31(6):47-52.
- [36] TAKEBAYASHI K,AYA T,ANDOW K,et al.Modal loss factor approximation for u-p formulation FEM using modal strain and kinetic energy method[J].Journal of Sound and Vibration,2021,505:116069.
- [37] FARNO E,BAUDEZ J C,ESHTIAGHI N.Comparison between classical Kelvin-Voigt and fractional derivative Kelvin-Voigt models in prediction of linear viscoelastic behaviour of waste activated sludge[J].Science of the Total Environment,2018,(613/614):1031-1036.
- [38] 秦园,李占龙,孙大刚,等.隔振硅橡胶Maxwell分布阶本构模型及其冲击力学行为特性[J].机械科学与技术,2021,40(1):16-21.
- [39] 王瑶,孙大刚,李占龙,等.考虑垂直因子的粘弹性材料分数阶时温等效模型[J].机械强度,2021,43(3):707-711.
- [40] 徐俊.分数阶粘弹性梁振动特性分析与控制研究[D].南京:南京林业大学,2021.
- [41] SAHOO S R,RAY M C.Active damping of geometrically nonlinear vibrations of smart composite plates using elliptical SCLD treatment with fractional derivative viscoelastic layer[J].European Journal of Mechanics-A/Solids,2019,78:103823.
- [42] PRITZ T.Five-parameter fractional derivative model for polymeric damping materials[J].Journal of Sound and Vibration,2003,265(5):935-952.
- [43] ZHANG H,LI S,ZHANG Z,et al.A five-parameter fractional derivative temperature spectrum model for polymeric damping materials[J].Polymer Testing,2020,89:106654-106656.
- [44] XU Y,DONG Y,HUANG X,et al.Properties tests and mathematical modeling of viscoelastic damper at low temperature with fractional order derivative[J].Frontiers in Materials,2019,6:194-196.