基于密度峰值法的复杂网络聚类增长维度研究Research on Clustering-growth Dimension of Complex Network Based on Density Peak Method
许英,罗梦迪
摘要(Abstract):
复杂网络是由个体或组织以及它们之间的关系所组成的结构。利用复杂网络的分形结构来解释和预测复杂网络的行为是目前的一个研究热点。分形维度是对复杂网络中分形结构的度量,为了更准确地对复杂网络分形结构进行度量,提出了一种基于密度峰值的方法来计算分形维度。该算法不同于之前选取一个种子节点或者将所有节点作为种子节点的方法,而是利用密度峰值法确定网络中的某几个核心节点作为种子,再计算网络的分形维度。仿真实验表明:基于密度峰值的方法比基于紧密度和原始方法得到更为精确的分形维度。
关键词(KeyWords): 复杂网络;分形维度;聚类增长维度;密度峰值法
基金项目(Foundation): 新疆维吾尔自治区自然科学基金(2017D01A24)
作者(Author): 许英,罗梦迪
参考文献(References):
- [1] SONG C,HAVLIN S,MAKSE H A,Self-similarity of complex networks[J].Nature,2005,433:392-395.
- [2] SHANKER O.Algorithms for fractal dimension calculation[J].Mod.Phys.Lett.B,2008,22(7):459-466.
- [3] SHANKER O.Sharp dimension transition in a shortcut model[J].J.Phys.A,2008,41(28):285001.
- [4] CARLETTI T,RIGHI S.Weighted fractal networks[J].Physica A,2010,389(10):2134-2142.
- [5] DAQING L,KOSMIDIS K,BUNDE A,et al.Dimension of spatially embedded networks[J].Nat.Phys,2011,7(6):481-484.
- [6] LACASA L,GóMEZ-GARDE?ES J.Correlation dimension of complex network[J].Phys.Rev.Lett,2013,110(16):168703.
- [7] 庄新田,张鼎,苑莹,等.中国股市复杂网络中的分形特征[J].系统工程理论与实践,2015,35(2):273-282.
- [8] WANG X,LIU Z,WANG M.The correlation fractal dimension of complex networks[J].Internat.J.Modern Phys.C,2013,24(5):1350033.
- [9] BIAN T,DENG Y,.Identifying influential nodes in complex networks:A node information dimension approach[J].Chaos,2018,28(4):043109.
- [10] FEI L,ZHANG Q,DENG Y.Identifying influential nodes in complex networks based on the inverse-square law[J].Physica A,2018,512:1044-1059.
- [11] 曹俊贤,宋春林.分形维数的计算及改进[J].信息技术与信息化,2017(10):19-23.
- [12] KIM J,GOH K-I,SALVI G,et al.Fractality in complex networks:critical and supercritical skeletons[J].Phys.Rev.E,2007,75(1):016110.
- [13] SONG C,GALLOS L K,HAVLIN S,et al.How to calculate the fractal dimension of a complex network:the box covering algorithm[J].J.Stat.Mech.Theory Exp,2007(3):P03006.
- [14] SCHNEIDER C M,KESSELRING T A,Andrade Jr J S,et al.Box-covering algorithm for fractal dimension of complex networks[J].Phys.Rev.E,2012,86(1):016707.
- [15] WEI D-J,LIU Q,ZHANG H-X,et al.Box-covering algorithm for fractal dimension of weighted networks[J].Sci.Rep,2013(3):3049.
- [16] 郑巍,邓宇凡,潘倩.基于模块度的社交网络分形维度计算方法.传感器与微系统,2015,34(10):125-127.
- [17] 潘浩,郑巍,张紫枫,等.软件网络分形结构特征研究.计算机科学,2019,46(2):166-170.
- [18] DUANSHUYU,WEN TAO,JIANG WEN.A new information dimension of complex network based on Renyi entropy[J].Physica A,2019,516:529-542.
- [19] WEI D,WEI B,ZHANG H,et al.A generalized volume dimension of complex networks[J].J.Stat.Mech.Theory Exp,2014(10):P10039.
- [20] NIE C-X,SONG F-T.Relationship between entropy and dimension of financial correlation-based network[J].Entropy,2018,20(3):177.
- [21] BO WEI,YONG DENG.A cluster-growing dimension of complex networks:From the view of node closeness centrality[J].Physica A,2019,522:80-87.
- [22] LIU W,LU L.Link prediction based Local Random Walk[J].EPL,2010,89:58007.
- [23] RODRIGUEZ A,LAIO A.Clustering by fast search and fifind of density peaks[J].Science,2014,344:1492-1496.
- [24] LIU DONG,WANG CHUAN,JING YUN.Estimating the optimal number of communities by cluster analysis[J].International journal of Modern Physics B,2016,30:1650037.