融合元胞自动机和特征加权花卉图像分类方法A Method of Flower Image Classification Based on Cellular Automaton and Weighted Feature Fusion
李哲妍,张素兰,胡立华,张继福
摘要(Abstract):
图像分割和特征融合是提高花卉图像分类精度的两个主要步骤,但是传统的图像分割方法常常会因花卉图像背景过于复杂而造成分割效果不佳,而且一般的特征融合方法忽略了不同特征对花卉分类贡献的不同。为有效提高花卉图像分类精度,提出一种基于元胞自动机和加权特征融合的花卉图像分类方法。首先,应用元胞自动机在目标和背景之间自然地形成一条明显的分界线,从而将花卉的主体区域从复杂背景中提取出来。其次,对提取的花卉主体区域的颜色特征和局部特征进行加权融合,然后利用SVM实现了花卉图像分类。最后,通过实验验证了该方法对花卉分类的有效性。
关键词(KeyWords): 图像分割;元胞自动机;特征融合;加权特征;花卉图像分类
基金项目(Foundation): 国家青年科学基金(61402316)项目;; 校博士启动基金(20132005)项目
作者(Author): 李哲妍,张素兰,胡立华,张继福
参考文献(References):
- [1]NILSBACK M E,ZISSERMAN A.Delving into the Whorl of Flower Segmentation.[C]//Proceedings of the 18thBritish Machine Vision Conference on Image and Vision Computing.Uk:El SEVIER,2010(28):1049-1062.
- [2]YUNING C,LEMPITSKY V,ZISSERMAN A.Bi Co S:A Bi-level co-segmentation method for image classification[C]//Proceedings of International Conference on Computer Vision.Washington D C:IEEE Computer Society Press,2011:2579-2586.
- [3]MABROUK A B,NAJJAR A,ZAGROUBA E.Image flower recognition based on a new method for color feature extraction[C]//.Proceedings of International Conference on Computer Vision Theory and Applications.Washington D C:IEEE Computer Society Press,2014:201-206.
- [4]VON N J.The general and logical theory of automata.[J].Papers of John Von Neumann on Computing&Computer Theory,1951:1-41.
- [5]QIN Y,LU H C,XU Y Q,et al.Saliency detection via Cellular Automata[J].2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:110-119.
- [6]ZHANG X,CAHILL N D.SLIC superpixels for efficient graph-based dimensionality reduction of hyperspectral imagery[C]//SPIE Defense+Security.International Society for Optics and Photonics,2015.
- [7]吴会宁.基于内容的花卉图像检索算法研究[D].扬州:扬州大学,2014.
- [8]吴会宁,胡学龙,陆慧敏.基于信息熵和分块颜色矩的图像检索[J].扬州大学学报:自然科学版,2014(3):50-53.
- [9]ZHANG S,ZHANG J,GUO P,et al.A FWCL-based method for visual vocabulary formation[J].Multimedia Tools&Applications,2016(75):647-665.
- [10]MIKOLAJCZYK K,SCHMID C.Scale&affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86.
- [11]张瑞杰,魏福山.结合Fisher判别分析和稀疏编码的图像场景分类[J].计算机辅助设计与图形学学报,2015,27(5):808-814.
- [12]陈开志,乐承沛,钟尚平.融合距离度量学习和SVM的图像匹配算法[J].小型微型计算机系统,2015,36(6):1353-1357.